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ABSTRACT. An optimal solution to the problem of making binary dmisione about a local region

of a reconstruction is prov; ded by the Bayeeian method. The decieion is made on the baia of the

ratio of the poeterior probabilities for the two hypoth~. The full Bayeaian procedure mquiree
an integration of the pterior probability over all pataible valuee of the image outaide the local

region being analyzed. In the present work, this full treatment is replaced by the mcmimum value

of the poeterior probability obtained when the exterior region is varied, but the interior ia fixed

at both hypothesized functional forms. A Monte Carlo procedure is employd to evaluate the uae-

fulneaa of the t-hnique in a signal-known-exactly detection taak in a noisy four-view tomographic
reconstruction eituation.

1. Introduction

When interpreting reconstructed images, it is often desired to make a decision about a
small region of interest without regard to the rest of the image. A standard approach to
this problem might be to reconstruct the full image from the available data and then make
the decision on the baais of how closely the reconstruction resembled the suspected object
in the region of interest. Such an approach is not guaranteed to yield an optimal decision,

We desire a computational method that achieves the optimal performance of a binary
decision taak. Such an ‘ideal observer’ haa been useful in the paat to help define the ultimate
precision with which one can interpret data of a given type (Hanson, 1980, 1983; Wagner
et al., 1!)89; Burgess et al., 1984a, 1984b; IIurgem, 1985). A fuUy Daye6ian approach is
proposed in which the decision is baaed cm the posterior probability, Muc!l of thin work is
baaed on the Bayesia~: concepts developed by Gull and Skilllng and their colkaguee (Gull,
1989a, i989b; Gull and Skill.ing, 1!380; Skilling, 1989), albeit under the assumption of a
Gaussian distribution for tha prior probability rather than their preferred entropic form,

Examplen of this 13ayeuian derision procedure are pre~entod for a coml~uted tomo-
graphic situation in which a nonncgativity constraint on the image i8 incorporated. ‘1’hc
performance of the comprehw-mivc Hayesirm procodure in compared to that of the tradi-
tional twm~tep approach u~ing a F40nte Carlo fiimu]ntion of tho ontiru imaging prmvm,
including the dccieion procms ( Ilanmm, l!ll!fla, IW(la), The prcwmt work is an extension
of the previous otudy by Ilanmn (1!)91).
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2. The Bayesian Approach

We briefly present the concepts of the Bayesian approach relennt to our problem. Much
more complete discussions of the fundament a.ls can be found in other cent ribut io.~s to the
proceedings of this workshop series. The essence of the Bayesian approach is the posterior
probability, which is sasurned to summarize the full state of knowledge concerning i, given
situation, The poste~ior probability properly combines the likelihood, which is based on the
recently acquired measurements, with the prior probability, which subsumes all information
existing before the new data are acquired.

Making a binary decision is the simplest possible type of hypothesis testing, because
there are just two alternative models between which to choose. According to basic proba-
bility theory, binary decisions should be made on the basis of the ratio of the probabilities
for each of the hypotheses (Van Trees, 1968; Whalen, 1971). In the context of Bayesian
analysis, then, a binary decision should be b=ed on the ratio of posterior probabilities.
This decision strategy is altered when there are ~ymmetric cost functions, indicating a
difference in the relative value of making correct versus incorrect decisions for ~ach state of
truth,

When a continuum of possible outcomes exists, aa in the estimation of one (or many)
continuous parameters, the best possible choice of parameter values depends upon the type
of cost function that is appropriate. It may be argued that for general analyses, the most
appropriate rule is to find the parameters that maximize the posterior probability, which
is called the maximum a posterioti (MAP) solution (Van Tr-, 1968).

In many problems there exist parameters that may be necessary to fuUy describe the
solution, but whose dues are of no interest. These unnecessary parameters can transform
a nimple hypothesis test into one of testing composite hypotheses. In such c~ea the proper
approach is to integrate the probability density distribution over these un~”anted variables.
The result of this integration is called the marginal probability,

2.1 POSTERIOR PROBABILITY

We assume that there exists a scene that can be adequately represented by an orderly array
of N pixels. We are given M discrete measurements that are linearly related to the original
image amplitudes. These measurements are aasumed to be degraded by additive noise with
a known covariance matrix R“, which dnscribes the :orrclations betwevn noise fluctuations.
T$e mcaaureme.nts, represented by a vector of length M, can be written u

g = Hf + 11, (1)

where f is the original image vector of Icngth N, n is the random noise vector, and H is
the measurement matrix, In computed tomography the jth row of H dcscribcs the weight
of the cont:ibutior, of image pixels to the jth projection mcasurcrnent,

Hecnuse the probability ie a function of corttinuous parameters, namely the N pixel
values of the image and the M data values, it i~ actually a probability dcneity, denignatml
b,v a small po. ‘I?herwgative kJg&rithm of the pmtcrior probability ie given by

-log [p(flg)l = d(f) = A(f)+ H(f), (2)

whore the tlrfit t~rm COIIIPS from thu Iikrlillood nnd the second tvrm from the prior proba-
bility. I’or dditive Gwmimn noi~e, tlw nogatiw Iog(likelihood) i~ just hidf of rhi-squnrcd
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which is quadratic in the residuals. Instead of a Gaussian distribution assumed here, the
Poisson distribution is often a better model for expected measurement fluctuations. The
choice should be baaed on the statistical characteristics of the measurement noise, which
we aasume are known a pm”on”.

The prior-probability distribution should incorporate as much aa possible the known
characteristics of the original image. We use a Gaussian distribution for the prior, whose
negative logarithm may be written rM

-log~f)] = II(f) = ;(f - qTq-’(f - i), (4)

where ~ is the mean and ~ is the covariance matrix of the prior-probability distribution.
As we have done before (Hanson and Myers, 1990c), we invoke the prior knowledge that the
image f cannot possess any negative components and institute nonnegativity as a separate
constraint.

The Bayesian approach is not baaed on any particular choice of prior. Another choice
for prior, ubiquitous at this workshop, is that of entropy, The entro~ ic prior has been
argued by Skilling (1989) to play a unique role for additive positive distributions. Whatever
prior is used. its strength affects the amount the reconstruction is offset from the true image
(Hanson, 1990b; Myers and Haneon, 1990). It is important to understand the characteristics
of solutions obtained regardless of the prior chosen. It is recognized that the prior provides
the regularization essential to solving ill-posed problems (Nashed, 1981; Titterington, 1985),
which arise because H possesses a null-space (Hanson and Wecksung, 1983; Hanson, 1987),

Given the posterior probability, we have the means for deciding between two possible
images fl and fz. Under the standard assumption that the noise is stationary and uncorre-
lated R. = diag(u~ ) = ( 1,0)2, the decision should be baaed on the posterior probabilities,
or equivalently, the difference of their logarithms

+21= @(f2) - @(fl) = ~ [2gT(gf - g2) + 18212- hihla]+ constant, (5)
n

where gk = Hfk. The only part of this exprerwlon that depends on the data is the inner
product between g and (gl - ga ). We note that thi~ inner product represents the familiar
cross correlation between the data and the difference between the alternative signals, which
is called the matched filter, The constant in Eq, (5) depends solely on f, fl, and f2, [t

provides an offset to 021 indicating a prior preference for one of the two choices, As @21is
linearly derendent on the data, it too has a (;ausBian-shaped probability distribution.

2,2 RECONSTRUCTION PROtt LEM

In the reconstruction problem, we seek to e~timntc all pixel wdues in the original FIcpnc, An
appropriate Baycsian solution to this prohlcm is the image that maximims the pontcrior
probability or, cqu;valently, minimizcn the n[~gativc logarithm of the po~terior r)robahility.
For the unconstrained MA I’ li(J]lltk)n ~, it i; rwcemary that -

vfOwf- ?) + H’rR:i(g - Hf) = 0,

Ilowcvcr, under the constr~int thtit the tiolution HhmIld ho nonncgativo,
retipoct to f, tnurit IN zero only whun (I > (); a nogativc dorivativc I*
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boundary fi = O. In computed tomography (CT), the matrix operation HT is the familiar
backproktion process.

A consequence of the prior is to pull the reconstruction away from the actual value
in the original image, an effect studied by Hanson ( 1990b) in unconstrained tomographic
reconstructions. The extent of biaa depends on the relative weights of the two terms in
Eq. (2). AS the prior contribution vanishes, the MAP result approaches the max!mum
likelihood (or Ieaat-square residual) solution.

2.3 ANALYSIS OF A LOCAL REGION

Instead of asking for an estimate of the original image, buppose that we zmk a different
question: which of two objects exists at a specific location in the image? The rest of the
image cuddenly becomes irrelevant. To address this question, we aasume that within the
image domain, a local region D is to be analyzed, Inside D the image f is aasumed to be
given by either fvl, and fpa. Now the parameters in the problem are not the full set of
image Values f, but rather fc, the image values in the disjoint exterior region ~ and the
two possible choices for D. With Bayes’ law the posterior probability may be written as

P(ft, fmllil) m liglfc, fpk)dft,f~k) a p(glff, fDk)P(f). In the Iaat step we have chosen to
avoid explicit specification of a prior on fpk, allowing it to be implicitly included in the
general prior for f.

As the new question regards only the region V, the Image values fc outside D are
irrelem.nt. The Bayesian approach specifies that we integrate the posterior probabilities
over the unwanted parameters of the problem, namely over the image values outside D. If
the problem at hand is to decide between two possible subirnagcs, fDl or fva, the decision
variable should be the ratio of the two marginal posterior probabilities (Van Trees, 196~;
Whalen, 1971), or equivalently its logarithm

Wog[=f] , (7)

where the integrals are to be carried out only over the external region L and include
all possible image values not disallowed by constraints. Within the context of Baycsian
analysis, this decision variable logically follows from the statement of the problem. llcnce,
we ~nert that it should yield optimal decisions, The ideal observer uses Eq. (7) to make
binary decisions regarding a local region,

Under certain circum~tance~ theoe integrals may bc dillicult to calculate accurately,
IIowever, when dealing with the Gau~sian prior. and likelihood-probability dcnriity distri-
tjutions presented in Sec. 2,1, wc oxpcct the pO.9tcriOr-probability density p(f~, f~klg) to

decrease rapidly from a unique maximum. [J~ing fck to designate the image in the ckterior
region that maximizm the posterior probability for the ~ubirnagc fnk, wc are promptwl to
rewrite the above ratio MI,

[

p(fr,, fn, [g)li,
?/1= log — 1 (8)p(ffa,fp~lg) hj ‘

(!))

whcrr thn phawspacn factor in
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which accounts for the extent of the spread in ~space of the posterior-probability density
distribution about its constrained peak due ~f&k, f~klg).

Generally ?~l # ff2, because a change in model parameters describing the interior
region alters the project ions, implying that a different exterior image will minimize the
posterior probability. In many situations, however, replacing the local region of the MAP
solution with either fD2 or fD2 may have little effect on the predicted projection vafues.
Then, p(ff, f~klg) is independent of fDk and, to good approximation, ~tl = ~tz = ft. so
both K factors in Eq. (8) are the same and

[1~=logp’(ff,fD,lg)

p(ft, fD~lg) .
(lo)

!n these situations, the decision variable can be given adequately by the change in the
Iog(posterior probability) induced by replacing the MAP solution ~ in D with the two
models, leaving the exterior region unchanged.

For unconstrained solutions of Eq. (6), the K factor is independent of fDk, because the
shape of the Gaussian posterior-probability distribution is governed by the full curvature

‘1 + R;’. Then the K factors in Eq. (8) cancel andof @,namely Rn

‘=’og[-tils (11)

The argument of the logarithm is called the generalized posterior-probability ratio. Equa.
tion (11) may not be a good approximation to (7) for constrained solutions, * the contri-
bution to the ~haae-space A’factor from the integral over each fi depends on the relation
of the peak in ffi to the constraint boundary. Nonetheless, because of its simplicity, we use
Eq. (11) and reserve for the future an investigation of a better approximation,

To evaluate Eq. (11) for subimages f~l and fD), it is ncccssary to find the pair of
exterior images, frl and f~2, that maximize the posterior-probability !ensity. In other
words, one must find the m=imum a pateriori or MAP reconstructi(m in the exterior
region with the image inside the local region fixed by the parameter values, To extend
the binary decision problem to one in which the model parameters are to bc estimated, it
Lccotnes necemary to simultaneously estimate the paramctorn and reconstruct the exterior
region with the aim of minimizing the posterior probability.

We employ the iterative method dc~cribed by Clutlcr, Rccdn, and Dawwm ( 1!)81) to
find the constrained MAP Bolutione. SW (Ilanson and Myers, 1991; l[an~on, 1991) for more
(h?ttilu.

3. Methodology

Wc demon~tratc the usc of the ilaymim Approach to making dw-iHiorlHAIJOIIt a local r~gion
in a rcr.onntructcd image with a very ~implc rxamp!e: dotoct, ion of disk H Imm(] on a very
Iinlited nurnbrr of noiny projrctionn, ‘1’hinbinary (Incrimination t~wk irromployd 1)~~.illl~t~
it in theoretically tract aide, it is oa~y t~~imform the rcqllirc(l (1(’ci~i(~t~.ltl~kil)gpr(m(lllrr,
imd it i~ potirdblc [0 riummarizv lhu rvsul’rr Milnplyo
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3.1 MONTE CARLO METHOD TO EVALUATE T4SK PERFORMANCE

The overail method for evaluating a reconstruction algorithm used here haa been described
before (Hanson, 1988a, 1990a). In this method a task performance index for a specified
imaging situation is numerically evaiuated. The technique is based on a Monte Carlo
simulation of the entire imaging process including random scene generaticm, data taking,
reconstruction, and performance of the specified task. The accuracy of the task perfor-
mance is determined by comparison of the results with the known original scene using an
appropriate figure of merit. Repetition of this process for many randomly generated scenes
provides a statistically significant estimate of the performance index (Hanson, 1990a).

3.2 SPECIFICATIONS OF DETECTION TESTS

The imaging situation is chosen in an attempt to maximize the possible effect of re-
estimation of the exterior region impiied by the fuii Bayesian treatment. The original scenes
contain either one or two disks, ail with amplitude 0.1 and diameter 8 pixels. The disks are
randomly placed, but not overlapping, within the circle of reconstruction of diameter 64
pixels. The background level is zero. Enough scenes are generated in the testing sequence
to provide 100 disks with ampiitude 0.1 and 100 nuU disks placed in the background region,

The measurements consist of four parailel projections, each containing 64 samples,
taken at 45° increments in view angle. Measurement noise is simulated by adding to
each measurement a pseudorandom number taken from a Gaussian distribution with a
standard deviation of 2. The peak projection value of each disk is 0,80. The signai-to-
noise ratio (SNR) for the signal-known-exactly (SK E)/ background-known-exactly (BKE)

detection of a disk may be easily calculated as [~ SNR~] 1’2, where SNRi is the SNR
of the ith measurement, summed over ail measurement that subtend the disk, yielding
SNRd@l.,,~= d ‘ = 1.89. To avoid a.hing artifacts in the reconstruction, the projection
data used for reconstruction are presmoothed using a triangular convolution kernel with a
FWHM of 3 sample spacings. As a result, the expected rms noise value in the smoothed
data is reduced very nearly to 1.0. Thus for all caaes studied we use the noise covariance
motrix Rm = diag(u~) = ( 1.0)2. With this assumption we are ignoring the correlations in
the data caused by presmoothing,

For the Gammian prior probability distribution we employ the ensemble mean fi =
0,0031 = constant, which is the average value of the scenes containing two disks, We
assume the ensemble covariance matrix is diagonal with ~ = diag(o~) and explore the
cfi’cctof choosing different valum of Uf.

The stated t~k is to dctcrt the prmence of the disks under the aatiumption that the
~ignal is known exactly (SKE) and thr background is known exactly (LIKE) in the 2D local
region. The varioue stratcgicn for making thin Mnary decision arc prcwntcd in the next
mctioni A useful measure to summarize the performance of binary decisions i~ the detection
index d,4, which is bwwd cm the arm under the R(!ceivcr Operating Charactcrititic (RO(’ )
curve, The ROC curve is ohtairwd in tlw ufiuul way ( ll~nson, l!l!)tla) from the hi~togr~ Is
in the dpcision varial.dc for the Migllal-kt)f)wl~-i~rtlsrllt anti the ~ignal known-ahmnt tvkt,~,
Oncc the R(’)C curve is gcucratmi and it~ wrra A (ieto’mit’r(i, then dA ifI ~olin(i Ilsillg
(iA = 2 ~rjc-1{2(i - A)), whpre pr~c-l i~ the invrtsc rrmidcmmt of the error function.
There are goo(i rwwmnnfor not li~ing the dotwtmhiiity i:l(icx d‘, which i~ hiwwi on thn fir~t
an{i wwond momcnt# of the hi~togrwn~ of tlw ~iw-iHiollvari~hiv (Wagnm rt al,, 19!)()). l~(~r
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a fixed number of binary tests, the relative statistical error in d,4 k smdest when dA is
about 2,2 (Hanson, 1990a). The imaging situation should be arranged to keep dA roughly
between 1 and 3,5 to optimize the statistical value of the testing procedure.

3.3 DECISION STRATEGIES

For the simple binary discrimination tests performed here, only two parameters are needed
to describe the model for the local region - the background level and the disk amplitude
relative to the background. The background is assumed to be constant. The position and
diameter of the disk are aasumed to be known. The edge of the disk is linearly ramped
over 2 pixels in radius to roughly match the blur caused by the reconstruction process.
The local region of analysis is assumed to be circular with a diameter of 14 pixels and
centered on the test pocition. When the disk is assumed present, the amplitude is set to
0.1 and when assumed absent, O. The background level is O for both tests. Because of this
choice for the model, it should be understood that all references to the amplitude of the
disk implicitly mean relative to the surrounding background. In all the decision strategies,
a decision variable is evaluated for each of the two hypotheses, and the d; fference bet ween
the two values is used to make the decision whether a disk is present or not.

The foUowing decision strategies are employed in this study:
Met hod A) In the simplest possible approach, one uses the projection data directly. The
decision is based on the difference in Xz for the two hypotheses. Explicitly, Eq. (11) is
evaluated under both hypothesized subimages for the local region of analysis D. The image
values outside the analysis region are implicitly =sumed to be zero. If the background is
truly zero and only one disk is present in the scene, thi~ decision variable operates at the
statistical limit attainable in the absence of prior information, However, it is obviously
deficient for complex ~cenes as it ignores the contributions to the projections ari~ing from
features outside the local region.
Method B) By Bayesian reckoning, the best possible decision variable for local analysis
is given by Eq. (7). For this method we use the approyjmation given by the generalized
posterior-probability ratio Eq, ( 11), which implies that for each choice of image for D, the
exterior region is reconstructed to maximize p(?r, f~klg), [n actual practice, this second
reconstruction step follows a preliminary constrained MAP reconstruction of the whole
image M pictorially described in Fib. 1.
Method C) l’hi~ method uses Eq. ( 10) for the decision variable based on the posterior-
probability distribution amociatcd with the MAP reconstruction, Readjustment of the
reconstruction external to the analysis region for each test hypothesis is not required. This
method was introduced by Gull and Skilting ( 1!)89) and studied by Myers and Hanson
( 1990) for an entropy prior.
Method D) Method D proceeds from the constrained MAP reconstruction /MAP from the
data. The dcci~ion variable is taken an the difference in If - ?~APlz for the two mO(]ebI
hypot he~ized !’or the local region. This method wu UWXIby llaneon and Myers ( l!l(llii)to
compare performance of tha Itaylcigh task u~ing MAP rcconstructionM IMA on C,aumian
and entropy priord. It corrmpond~ to u~ing a Iikelinood approach bad on the rocon~trllr,-
tion in which thu noise fluctuntionfl in the rwonstruction ~re amumcd to bc uncorrulutod
and Caumian dintributwi, ‘1’hi~ rrwthod therefore ignoren the correlation Bin the postcrior-
probabi]ity distribution, Rhown in Fig, 2, that arc inrorporakxl to Jarious degrees by
mcthoda 1? and C.
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Fig. 1. This composite image shows the process used to make the binary decision regarding the

presence of a disk, The original scene (upper left) is reconstructed from four projecting using

constrained maximum a posterron reconstruction (upper right) with ensemble standard devia-

tion of = 1. To teat the poaatble presence of a disk, that disk ia placed into the reconstruction

(lower left). Then the image outside the local region of the disk is ‘rereconstructed’ to obtain

the image (lower right) that maximiz= the posterior probability with the disk present. This

procedure is repeated with the same region replaced by the background value (zero). The

difference in the logarithms of the two resulting posterior probabilitim is used as the dccisiotl

variable.

Method E) Method E also proceeds from the constrained MAP reconstruction fMAll.
Unlike the preceding methods, the ampl~turle and background arc {aried to find the com-
bination Of VdUeS that ITtinhIIiZWI[f - fMAp12. [n this fitting process, both the relative
amplitude and the background are constrained to be nonnegative. The amplitude 80 &4cr-
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Fig. 2. Con[our plot showing the correlation in -log(posterior probability) (solid line) for fluc-

tuations in two pixel vatues about the MAP solution for an aasumed value of the ensemble

~tardard deviation uf = 1.0. The first pixel is centered on the lower middle disk in the first

scene (Fig. 1) and the other is three pixels down and three pixels to the left of the first. The
dotted contours are for the likelihood and the dashed contours for the prior.

mined is used as the decision variable. This method waa used by Hanson in many earlier
studies (1988a, 1988b, 1990a, 1990b, 1990c). It is closely related to the non-prewhitening
matched filter, which would be optimal if the fluctuations in the reconstruction were un-
correlated and Gau~sian distributed.

4. Example

A constrained MAP reconstruction of the first scene of the testing sequence for two disks
is shown in Fig. 1. Because of the noise in the projection data, the presence of the disks in
the original scerw is obscured in the reconstruction. Aii interesting aspect of the posterior-
probability approach is that one may calculate the probability of a disk being present at
any iocation in the reconstruction, Even though the reconstruction might be zero (the
lower limit decreed by the constraint of nonnegativity) throughout a certain region, the
probability of a disk being present in that region is finite and calculable. Dy contrast, any
analysis method b~ed solely on the reconstruction would not be able to distinguish two
different regions that are completely zero. This point iti emphasized by the contour plot
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d*

Method Decision Variable Uf = 0.02 Crf = 0.1 of = 0.2 Uf = 1

A Axz 1.75 ‘— same same same
(use data only)—.

B Alog(posterior probability)
—.

1.80 1,87 1.82 1.74
(exterior re-estimated )

c Alog(posterior probability) - ‘1.81 1.97 1.81 1.70
(exterior fixed at ~MAP) {

D Alf – fM*P12 1.80 1.76 1.67 1,47
(use reconstruction only)

E Disk amplitude 1.01 ! .09 1.01 0.!36
(constrained fit to If - ?~*p12)

RMS residual 0.914 0.823 0.774 0.725
<amplitude>dl,k 0.00(J5 0.0068 0.0134 0.0247
<amplitude>bkg 0.0002 0.0014 0.0024 0.0039 1

Table 1. Summary of the performance of the detection task for scenes containing two disks each

obtained using the decision methods described in the text,

in Fig, 2, when the values of two nearby pixels are varied. The MAP solution for on. of
the pixels is ze “o, although both pixels actually fall within a disk in the original scene and
should have : value 0.1. The plot shows how the prior probability shifts the postericr
away from th Icelihood.

The test se.[uences generated to demonstrate the use of po5terior probability in decision
making are analyzed for sevetal different values of the ensemble covariance matrix af. As wc
have found before (Hanson, 1989b, 1990h; Hanson and Myers, 1991a; Myers and Hanson,
1990), the performance of vision-like tasks usually varies with the parameters that control
the rms residual achieved by the mconst ruction algorithm, For the present MAP algorithm,
that parameter is the ratio uf/an, Recall that an is fixed at its expected value of 1,0, The
strength of the prior is proportional to l/o~, AtI the prior becomes stronger, the rms
residuals of the constrained MAP reconstructions increase, The disk amplitudes, me~~urcd
as the average value over each disk relative to the average over its surrounding annullls
(essentially method E), arc steadily reduced, These amplitutle~ never come close to t!le
actual value of 0,10, probably because there are so few views, giving rise to a giganti( I\IIll

space (Hanson, 1987), together with so much noise. When a Gaussian prior with ii = () is
employed, which is nearly the cam here, the MAP algorithm amounts to using minimum-
norm regularization. Therefore, control of the noise, which (lominate~ the rcconstructwl
field, can only be achieved by reducing the sensitivity of the reconstruction (iIanson, l!MIoh).

Table 1 summarizes the detectability rcsulte obtained in the tests dmcribmi above for
the two disks/gcene test. ‘1’hcabmlutc statistical accuracy of thmc dA values is hbo:lt 0.’2fi,
Much Iwtter accurmcy should prevail in comparisons between crttricw in the table, however,
because they are ohtaincd hy analyzing the exact snme data s~(l~icnc~, ‘IIIIG ffA value ft)r

LhC two-disk sccncs ha.md on using ju~t the rmwurcmcnt data ( Method A) i~ 1,75, in gmjtl
~grcement with the VFLIUCof 1.89 mtimatcd in SCc. 3.2. AR only the Iikolilmod i~ involv(~[l,
thin value is indcpcndcnt of Uf. Iloth mcthmls of’u~ing t4c pr)ntcrior l~rol)thility (motl)(ds
II and C) provide noar!y the ~wnr dclcrtability over a large range of rrf valum, I)vrhapfl
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this consistent behavior stems from the ability of the posterior probability to fully retain
the available information even though of changes. There seems to be Little advantage to rc-
estimation of the exterior of the local region to minimize the posterior probability implied by
Eq, (11) in this imaging situation. There is a slight trend toward better detectability as Of
gets smaller. The force of regularization imposed by the prior is overwhelming at a, = .02.

For example, the recorwtruction va!ues lie between 0.0005 and 0.0046; the nonnegativity
constraint is not even engaged. We observe very similar trends for the single disk sceneu as
well.

The methods b~ed on the posterior probability yield sightly bettei (= 10%) detectabil-
ities than method D, which is hued only on the reconstruction under the assumption that
the noise uncertainty is uncorrelated and stationary. Basing the decision on tha estimated

disk amplitude (method E) significantly (= 45%) reduces detectability compared to the
other methods.

For unconstrained MAP with af = 0.1, the (fA values are nearly the game as those
in Table 1, so the nonnegativity constraint h~ little eflect on detectability il, ~he present

situation. In previous work involving a limited number of views, w? have seen remarkable
improvements in detectability wrought by the non negativity constraint (Hanson, 1988a,
1988b, 1990c). Although the less efficient method E was used in those studies, the principal
reason for the ineffectiveness of nonnegativity in the present caae is that it is more limited
by noise than by the null space, The large amount of noise is needed to limit d~ within the
range of rewonable accuracy aa discussed in Sec. 3,2, The effects of artifacts were enhanced
in previous studies by adding several disks with large amplitude to the scene. In the present
study there is only t~e presence of a second disk with the same amplitude outside a given
analysis region. This extra disk can hardly give rise to significant artifacts,

5. 13iscussion

We have compared several methods for detecting small disks in tomographic Ieconstruc-
tions. The worst performance is provided by method E in which the amplitude obtained by
fitting the MAP reconstruction is used as the decision variable, This choice is the same w
the matched filter for uncorrelatcd, Gaumian. dintributcrl, noiee fluctuation~, so it is morv
appropriate for unconstrained reconstruct.ions than than for constrained rcconstructioli H,
A better decisi~n variable is the mean-square difference between the model and the rcrx~tl-

struction If - fMApll, as it is similar to a log(likelihood ratio), again ignoring corrc]ations
in the reconstruction fluctuations, This method provides much better re~ulta, The best dc-
tcctabilitiee are achieved by basing decisionu on the calculated po~tcrior probability, which
takes fully into account the information contained in the moasuremcntti as well w in t,hv
prior knowledge. In the prc.wnt tmtri, however, there In little I.wncfit in rc.cRtilnating tbo
exterior region.

We note that M an image cont~ining N pixcln, the MAP solutiun (or a reconstruction
of nny type) corrcspond~ to a Ningc point in an N.dimen~ional Rpaco. Any w~dyHi~ Imwul
wdcly on such a rrcrmhtruction mugt nwxwonrily Igrmrc tho {{~mplcxity O( thn full poHtori[)r-
probabillty diutrilmtion, which corrvspond~ to a cloud in the rItiIIIt! N.tlilnvnnionul tIINWO.It
iMthe corrclatlon~ (’mbodicd in the pc)~tcrior.l)r(~l}al~ilitydistribution thmt pro~lltill~l~lyWI,
th~ ideal obtiorvor npart from nmrtd~. A humnn obwrvor viewing R r(’t’{)l~titrll(tiolliN,in N
Hvnne, handlc~ppcd by not, buving nrmwfi to thr full po~tcrior probability dl~tributit~n :~ti[l
thun may have to rwwrt to thr URPof a ,!orisi(m lllotl~od ~lmilar to 1) or N,
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The full Bayesian treatment codified by Eq. (7) is expected to represent the ideal
observer.
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